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My research goal is to bridge the gap between virtual and real world, and develop
practical systems to accurately represent the appearance and realism of our world.
This encompasses a variety of fascinating graphics and vision tasks, such as 3D generation, ap-
pearance acquisition, relighting, neural rendering and inverse rendering. My PhD research focuses
on a sub-branch of these tasks, with the emphasis on material acquisition and generation.

In the graphics rendering pipeline, the reflectance property of materials is an important factor
determining the appearance of the scene. Spatially-varying bidirectional reflectance distribution
function (SVBRDF) codifies the material property by describing how the light is reflected from the
surface. There are two general ways to obtain SVBRDFs: material acquisition, with the goal of
extracting SVBRDFs from the target, and material generation, aiming at synthesizing SVBRDFs
without relying on reference. In traditional methods, technicians use either hardware to acquire
materials or procedural substance graphs for material generation. Although these methods are
accurate and interactive, they are time-consuming and impractical to non-professional users.

With the advent of deep learning techniques, many learning-based approaches have been pro-
posed for lightweight material acquisition [1, 2, 3, 4, 5, 6, 7, 8] and generation [9, 10]. Specifically,
these approaches focus on extracting SVBRDFs from a casually captured single photo and gener-
ating SVBRDFs efficiently. Since obtaining ground truth SVBRDFs is challenging for real data,
these systems are mostly trained on synthetic data. Unfortunately, synthetic data exhibit a huge
distribution gap to the real-world data, causing unrealistic acquisition and generation results.

To address these limitations, my PhD research strives to explore practical and robust
systems with the goal of mitigating the gap between real and synthetic data and
obtaining realistic materials. This research statement is organized as follows: the first section
discusses my completed and in-progress research on realistic material acquisition and generation,
and the second section covers my future agenda.

1 Completed and Ongoing Research

1.1 Material Acquisition
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Figure 1: Our system trained on hybrid data
can better reproduce the appearance of real data
than synthetically trained model.

Hybrid training strategy The material pri-
ors of most single-shot SVBRDF acquisition
methods are trained on synthetic datasets,
causing limited generalization to real examples.
To address this issue, in our work published at
Eurographics 2021 [11], we propose a novel hy-
brid training strategy to train our system un-
der the supervision of both synthetic and real
datasets. Our key observation is that a pair of
real images of the same material captured with
different flash lights can be used for supervising
the network. We collect a real dataset contain-
ing pairs of same materials under different flash
lights, and use one of the images as the input
and the other as the ground truth. Our system trained on hybrid dataset demonstrates better
performance (Figure 1) in handling real examples than state-of-the-art methods.
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Figure 2: Our lightweight semi-procedural ma-
terial prior can produce a result matching the
appearance of this target wood: our result even
shows knots in the wood pattern, despite the ini-
tial grayscale maps having no knot-like features.

Semi-procedural material prior To in-
corporate editability and tileability to the ac-
quisition system, the existing methods utilize
procedural substance graphs as material priors.
However, such synthetic priors are still complex
and have limitations in representing real sam-
ples. To tackle this problem, in our work pub-
lished at CGF 2023 [12], we design a lightweight
semi-procedural material prior that can acquire
editable and tileable materials without relying
on any synthetic dataset or node graphs. In-
spired by the traditional substance graphs, we
utilize a specialized lightweight network to convert a set of input noises/patterns to SVBRDFs
that matches the target materials under the style similarity metric. By manipulating the input,
users can obtain tileable materials with varying fine details while following the style of the target
materials. This prior can avoid highlight burn-in artifacts (Figure 2) and enable control over the
results at low computational and storage cost.

1.2 Material Generation
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Figure 3: The comparison between PhotoMat
and TileGen. As is shown here, the sampled ma-
terials of PhotoMat are more photo-realistic than
TileGen, demonstrating the effectiveness of our
method.

Material generators trained on real flash
photos The existing material generators are
built upon different architectures (such as GAN
and transformer) to synthesize materials. One
of our work, TileGen [13], published at Sig-
graph Asia 2022, is a category-specific GAN-
based material generator producing tileable
and editable materials. However, TileGen and
other existing generators are all trained on syn-
thetic dataset, which significantly limits the re-
alism of the sampled materials. To address this
limitation, we propose PhotoMat [14] , the first
realistic material generator trained exclusively
on real flash photos. Training generators on
real data is challenging since the supervision
of material maps is unavailable for real photos.
We achieve this goal by performing both generation and acquisition within a single framework and
splitting the problem into two parts. First, we train a generator for a neural material that is ren-
dered with a learned relighting module to synthesize relit realistic materials. Then we utilize a map
estimator to decode SVBRDF from the neural material. We demonstrate that PhotoMat surpasses
all existing material generators in its ability to generate photo-realistic materials (Figure 3).

Extension of PhotoMat This is an in-progress work in collaboration with Adobe Research.
PhotoMat has demonstrated the possibility of training a material system without direct super-
vision. However, the training dataset of PhotoMat is limited to flash photos only, and the scale
of such dataset is relative small. Therefore, in this project, we relax the data capture constraint,
extending from known flashlight to unknown environmental lighting, and aim at training a real-
istic material generator on a general real dataset such as million-level Laion Dataset. This would
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require three carefully-designed key components: an effective curation techniques to filter Laion
Dataset, an environment light estimator for real materials, as well as a robust neural renderer
under environment lighting.

2 Future Research Agenda
My long-term research goal is to develop systems that can accurately represent our real world
and generate realistic contents. To fulfill this objective, in addition to the previously discussed
research, there are a variety of interesting and challenging tasks I would like to explore in the
future.

Figure 4: An example of ”material picker”.

Scene-level inverse rendering Several of
my completed research target on realistic ma-
terial acquisition from planar surfaces, with
the potential extension to indoor scenes. One
prospective avenue is scene-level inverse ren-
dering, with a compelling application described
as “material picker”. Similar to ”color picker”
through which users obtain the RGB value by
selecting different pixels on an image, ”mate-
rial picker” enables users to acquire SVBRDFs
from any selected small patch on an indoor

scene lit under unknown lighting (Figure 4). In the existing scene-level inverse rendering meth-
ods [15, 16, 17], their systems are trained under the supervision of synthetic assets, causing the
limited realism and low computational efficiency. To circumvent this problem, it would be promis-
ing to develop a realistic ”material picker” that is exclusively trained on real indoor dataset.
This would require several key components including the estimation of indoor lighting, dataset
preparation and robust acquisition and generation system.

3D content generation Most 3D content generators are trained on 3D datasets [18, 19, 20, 21]
or well-curated 2D datasets [22, 23] containing images with similar scale, orientation and categories.
Unfortunately, although the existing 3D datasets are carefully designed, they still exhibit several
limitations compared to common 2D image dataset such as lack of realism, limited diversity and
relatively small scale. In addition, most large-scale 2D datasets are non-curated, consisting of
diverse objects with unknown scale and orientation. My goal is to train a 3D content generator on
the 2D non-curated datasets in order to generate more diverse and realistic content. An existing
work [24] has demonstrated the possibility of training such system, but there still exist plenty of
room for improvement in the future. For example, we could combine and leverage the benefits of
diffusion model and GAN or include stronger 3D priors extracted from 2D dataset.

3D intrinsic generation Another area of interest is investigating generators which are ca-
pable of generating lighting-disentangled intrinsic properties of 3D objects or scenes. Existing 3D
generators commonly use implicit mesh representation and synthesize final RGB image via volume
rendering, where lighting, geometry and material properties are coupled with each other. This
would limit the seamless integration of generated content into the graphics rendering pipeline. To
address this limitation, it would be promising to design a system that can generate 3D intrinsic
properties such as albedo, normal and roughness that are disentangled with lighting. Furthermore,
to process further, we could potentially train such 3D intrinsic generators on some well-curated
2D datasets. This would necessitate robust priors on lighting estimation, intrinsic decomposition
and a differentiable neural renderer.
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